
NOTES 

Flow through Regular Polygonal Channels 

INTRODUCTION 

In an earlier communication,' we presented a general treatment of flow in rectangular channels 
from a square to a wide slit. We now put forward a method for obtaining flow equations for regular 
polygonal channels (both parallel-sided and tapered) on the assumed approximation that the flow 
rate through a regular polygonal section equals that through a circle of equal cross-sectional area 
with radius R. In the process we are able to obtain an approximate Rabinowitsch correction which 
applies to regular polygonal channels. In deriving output equations for an equilateral triangular 
channel and for a square channel by using the natural geometry of the systems without recourse to 
the circular approximation, we intend to subject these alternatives to experimental scrutiny and 
will report on the results in due course. 

UNTAPERED POLYGONAL CHANNELS 

Let N be the number of sides of length S of a regular polygon, a the half-angle subtended by S 
with respect to any concentric circle, so that a = n-/N, and R the radius of a circle the area of which 
is equal to the area of the polygon. From elementary geometry, 

S2 n- 
4 N 

areapolygon = - N cot - = n-R2 

and 

so that 

where 

N n -  
t;$ = q , C O t N  (3) 

It is appreciated that the assumption of equal output for equal cross-sectional areas involving 
a regular polygon on the one hand and a circle on the other assumes that the isovels show approxi- 
mately the same pattern. This is certainly true when N becomes large enough for the angle a to 
approach zero. In the triangle, a is 60°; in the square, 45O; in the pentagon, 36'; and in the dodecagon, 
15'. But since the isovels very closely resemble those of a circle once N 2 5, it is felt that the ap- 
proximation is justified, and we therefore proceed with our assumption. 

The Rabinowitsch-corrected Hagen-Poiseuille equation for the cylindrical channel of cross-sec- 
tional area equal to that of the polygon is 

Q = - xn  ( ~ ) " n ~ K 3 n + l ) h  

From the balance of forces in the polygonal (prismatic) channel 
3n + 1 27L 

- N * SL = A P x [ ~ S ~  
or 

APS n- 
7 =-cot- 

4L N 
But 7 = qi.", and using eq. (5), 

(4) 

(5) 
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Substitution in (4) gives 

And since R is given by eq. (2), 

Q = ?m + ( )l’n (f 4s)(3n+1)’n 
3n + 1 S cot(r/N) 

Therefore, 

3n + 1 S cot(r/N) l/n S 
+ =  ( Q . - pn ) ( ] (&Ot;)-(3n+1)/n 

or 

Now, when n = 1 (the Newtonian case), 

or 

32Qr tan(r/N) 
S3N2 ?N = 

and on dividing (8) by (9) and simplifying it is seen that 

+ - 3n + 1 ( 4 F T 4 ( n - l ) / n  

+N 4n 

(7) 

(10) 

the approximated Rabinowitsch correction for regular polygons. 

angle, so that 
Checking eq. (lo), it is seen that +/+N = 1 when n --* 1, whilst, for N + -, r /N becomes a small 

and 

=- 
4n 

Having thus obtained a working Rabinowitsch correction for regular polygons we proceed as 

Using (5 )  and the power law, 
usual: 

Substituting for S on the left hand side as per (2), we then get 

2APR cot(r/N) 
4 L d ( N l r )  cot (TIN) 

= r.h.s. of above equation 

or 

and making AP the subject: 



3941 

TABLE I 
A" as a Function of N and n 

A" 
A 

tan' n = 1 n = 0.75 n = 0.55 n = 0.40 n = 0.33 n = 0.25 - N 
N -  

K N N 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 - 

0.955 
1.273 
1.591 
1.910 
2.228 
2.546 
2.864 
3.183 
3.501 
3.820 
4.137 
4.456 
4.774 

60 
45 
36 
30 
25.71 
22.5 
20 
18 
16.36 
15 
13.85 
12.86 
12 

1.732 
1.OOO 
0.727 
0.577 
0.482 
0.414 
0.364 
0.325 
0.294 
0.268 
0.246 
0.228 
0.213 

1.286 
1.128 
1.076 
1.050 
1.036 
1.027 
1.021 
0.017 
1.014 
1.012 
1.009 
1.008 
1.008 

1.208 
1.095 
1.056 
1.037 
1.027 
1.020 
1.016 
1.013 
1.010 
1.009 
1.007 
1.006 
1.006 

1.109 
1.051 
1.031 
1.020 
1.015 
1.011 
1.009 
1.007 
1.006 
1.005 
1.004 
1.005 
1.003 

1.042 
1.020 
1.012 
1.008 
1.006 
1.004 
1.003 
1.003 
1.002 
1.002 
1.001 
1.001 
1.001 

1.014 
1.007 
1.004 
1.003 
1.002 
1.001 
1.001 
1.001 
1.001 
1.001 
1.OOO 
1.OOO 
1.OOO 

1.003 
1.002 
1.001 
1.001 
1.OOO 
LOO0 
1.000 
1.OOO 
1.000 
1.000 
1.000 
1.000 
1.OOO 

TAPERING CHANNEL WITH POLYGONAL CROSS SECTION 

To adapt eq. (11) for a tapering cross section we follow the usual technique of considering the in- 
cremental pressure drop dP over a corresponding length, the latter being expressed in terms of dr 
and the taper angle 0: dl = -dr cotB. This is then followed by integration between the entrance 
and exit radius to recover the overall pressure drop AP and results in 

where R1 and Rz can, of course, always be expressed in terms of S1 and Sz. Now, it is already known 
that for a tapering circular section we have 

Inspecting eq. (12) and (13) it is seen that 

A" represents the increase in pressure to maintain a given flow rate through a tapering die of polygonal 
cross section when compared with a circular cross section of identical cross sectional area and 
identical length. The values for N / r  (in radians), K / N  (in degrees), and tan ( K / N )  are given in Table 
I for polygons with N ranging from 3 to 15. Table I also gives the appropriate values for A" with 
n ranging from 0.25 to unity. 

It is seen that the "error" involved in the approximation as quantified by A n  for Newtonians (n  
= 1) is as much as 29% for the triangle, 13% for the square, and 8% for the pentagon, but thereupon 
falls rapidly as N increases beyond 5. 

For pseudoplastics, however, this error reduces substantially as n reaches typical values for polymer 
melts and at  n = 0.33, for example, the error even in the triangle is a mere 1.4%. This suggests that 
the approximation should be of considerable practical value. 

In the next section we shall consider an alternative treatment of triangular channels which is not 
dependent upon the assumptions made earlier on, but which is based upon the specific geometry 
involved. 

THE PRESSURE DROP IN EQUILATERAL TRIANGULAR PARALLEL-SIDED 
AND TAPERING DIES 

From the balance of forces in this geometry, 7 - 3SL = AP - ( S 2 / 4 ) a ,  so that 



3942 JOURNAL OF APPLIED POLYMER SCIENCE, VOL. 26 (1981) 

(15) 
LIPS& 

7=- 
12L 

According to F. N. Cogswell,2 the “best guess” for the shear rate is 

(16) 
Q& +N =- 

2 s 3 4  

Cogswell also considers that the Rabinowitsch correction for this geometry is reasonably approxi- 
mated by that which applied to circular ducts, namely: 

3 n + 1 .  3 n + 1 4 : ,  
Y N = -  -- +=- 

4n 8fl 
According to the Power law, therefore, 

Making AP the subject of the equation, 

which simplifies to 

In the Newtonian case (n  = l ) ,  
AP = (AP)N = L Q V ~ S - ~  (18) 

while for n = l/3 (a common value for many polymer melts), 

AP = ( A P ) 1 / 3  = 2qL(9Qfi)’”S-’ (19) 

We now consider the pressure drop in a tapering duct with entrance and exit sides and heights 
S1,Hl and S2,H2, respectively. Since in an equilateral triangle S = 2H/&, eq. (17) becomes 

The incremental pressure drop d P  is therefore given by 

where h is the height of the channel a t  any point 1 from the entrance. From trigonometry, tan 0 = 
dh/2 dl, and dl is therefore 

dh 
dl = - cot0 

2 

where 0 is the taper angle. Substituting for dl in eq. (21), 

(22) 

Integrating between the limits of HI and Hz, 

or 
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In the Newtonian case (n = l), 

h~ = (M)N = * cot 0(Hi3 - H . 3  
32 

and for n = '/3 (the common value for many polymer melts), 

hP = ( h P ) 1 / 3  = 34/39 cot 8 ( Q * - ':)'I3 (H;' - H;') 

or 

3943 

(24) 

Since H = ( S / 2 ) d ,  eqs. (231, (24), and (25) may be rewritten in terms of SI and 5'2, giving, re- 
spectively, 

and 

DISCUSSION 

This note continues a series of communications which consider viscous flow of power law liquids 
through parallel-sided and tapered channels with circular, wide-slit, arbitrarily (not necessarily 
wide-slit) rectangular, and regularly polygonal cross sections. A series of equations was derived 
which used the appropriate Rabinowitsch-corrected Hagen-Poiseuille equations. In the case of 
the polygonal channels a function X(N) was defined in conjunction with the assumption that the 
flow rate through a regular polygon is the same as that through a circle of equal cross-sectional area. 
This function compensates for the inaccuracies of the assumption which are seen to be severe in 
Newtonians in the case of the triangle, still substantial for the square, but quickly peter out thereafter. 
In typical pseudoplastics (n < 0.4) the error is negligible even when N < 5. The square geometry 
was analyzed in our preceding paper and the triangular geometry was dealt with in a semirigorous 
manner appropriate to it, so that we have two alternative equations each for the square and for the 
triangular channels. We are constructing suitable dies and will test the equations against the ob- 
served pressure drops. This will be reported in due course. 

SUMMARY 

A general method for analyzing viscous flow through regular polygonal channels is presented, based 
upon the assumption that the flow rate through regular polygonal sections equals that through circular 
sections of the same area. In addition we offer alternatives which apply specifically to equilaterial 
triangles and to squares. 
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